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1. INTRODUCTION

Let M be a class of functions in qo, 8] with 8 > 0. All function spaces
(classes) in this paper will be spaces of real-valued functions. Suppose that
for each E, °< E ~ 8, a function I E qo, 8] has a best uniform approximant
P.(!) on [0, E] from M; that is,

II P.(!) - 111[0.<] = inf{11 p - 111[0.<1 : P EM},

where II 11[0,<1 is the supremum norm over [0, E].
If, as E --4- 0+, P.(!) converges to some function Po(f) uniformly on some

interval [0, Eo], EO > 0, we say that Po(f) is a best local approximant off
In [1], the authors studied a situation where M is the class of all rational

functions (with real coefficients) of type (m, n), m o?: 0, n o?: 0. It was shown
that if IE cm+n+l[O, 0], 8 > 0, then the net {P.(!)}, °< E ~ 8, converges,
as E --4- 0+, to the [m, n] PaM approximant of f, uniformly on some real
neighborhood of 0.

In Section 2, we derive two basic properties of best local approximation
when M is a finite-dimensional linear subspace of C[O, 8]. In particular,
we give a necessary and sufficient condition for the existence of best local
approximants for all functions in cm+n+1[O, 8]. It turns out, as expected,
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that best local approximants from such a subspace display properties similar
to those of Taylor polynomials.

In Section 3, we introduce the ideas of best quasi-rational approximation
and best local quasi-rational approximation. As an application of a result
in best quasi-rational approximation, we show that in the polynomial case
the best local quasi-rational approximant of a "nonsingular" function in
cm+n+l[O, oj coincides with its [m, nJ Pade approximant.

We think that the concepts of best local approximation and best local
quasi-rational approximation are interesting. It is clear that many questions
in this subject still remain unanswered.

The idea of "shrinking" intervals has been considered by many authors
for different problems; we mention only Maehly and Witzgal [3, 4J.
An interested reader also should refer to [5, Theorem 62 and Sects. 6.4, 9.3J.

2. BEST LOCAL ApPROXIMATION FROM A HAAR SUBSPACE

Throughout this section, we will let u1 , ... , Un be functions in Cn[O, oj,
o> 0, such that {u1 , •.. , un} forms a Haar system - on [0, 0]. Let
Sn = Sn(u1 , ... , un) be the (algebraic) span of {UI ,... , un}. For a function f
in qo, oj, Pi!), where °< E :( 0, will denote the (unique) best uniform
approximant off on the interval [0, EJ from Sn ; that is, PEU) is the unique
function P in Sn satisfying

I:f - P [!ro,d = insf lif - p Ilro,<1 .
pE n

We have the following result concerning convergence of Pi!) to the best
local approximant off

THEOREM 2.1. The net {PEU)}, °< E :( 0 converges as E -+ 0+ for every
function f E Cn[O, oj ifand only if the n X n matriX,

(2.1)

is nonsingular. Furthermore, in the case ofconvergence for a given f E Cn[O, oj,
the limit function PaCf) is in Sn and satisfies

.i = 0,... , n - I. (2.2)

Observe that since Sn is finite-dimensional, coefficientwise convergence
of Pif) is equivalent to uniform convergence on [0, 0] and to pointwise
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convergence there. The matrix An is actually the Wronskian matrix of
U1 , ••• , Un' evaluated at the origin. Hence, if An is nonsingular, then by
continuity, the Wronskian matrix is nonsingular on some interval [0,7)],
7) > 0, so that {u1 , ... , un} (or a rearrangement of it) is an extended Chebyshev
system on [0, g] for some g > °[cf. 2]. To establish Theorem 2.1, we need
the following technical result.

LEMMA 2.1. Suppose that the matrix An in (2.1) is nonsingular and that

(2.3)

as € ->- 0+. Then, for each i = 1, ... , n, CXi,< ->- 0 as € ->- 0+.

Proof of Lemma 2.1. Without loss of generality, we may assume that
for i,j = 1,2'00" n, we have uji-1)(0) = Di,j, the Kronecker delta. Now
suppose that

does not converge to zero as € ->- 0+. Let {€k}~~l be such that €k ->- 0, and
o < €k ~ 0, Y<k ? Y > 0 for all k. Let f3i'<k = CXi.<jY<k' Then I f3i'<k I ~ 1
for all i and k, and for each k, I f3i'<k I = 1 for some i = i(k). Clearly, for
i = 1, ... ,11,

as t ->- 0+. Hence,

On the other hand, since f3i'<k = CXi,<jY<k and Y<k ? Y > 0, we have, from
(2.3),

Therefore, we can conclude that

with some f3i'<k ' i = i(k), having absolute value 1. Let {k;}~l be a sequence
of {l, 2,oo.} and let io be an integer, 1 ~ io ~ n, such that each i(k j ) = io •
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Applying Markov's inequality io times to the polynomials

n '1)
i~(3"E((i-1)! t

i
-

1
,

we have 1 = (3i
o

,E", == 0(1), Thus, we have proved that (Xi,E -* 0, as E -+ 0+,
for i ce" 1, .. " n, )

Now we can prove Theorem 2,1. Suppose that Plf) -+ Po(f) as E -+ 0;,
for each I EO Cn[O, 8]. Clearly, Po(f) EO 5n . Let 0 < E ~ 8. Then, by the
Alternation Theorem, there exist t1.E "'" tn,E such that 0 < t1.E < ... <
tn,E < E and

i = 1, ... , n.

Hence, by Rolle's theorem,

j~' I, ... , n

where °< 1)1.E < .,. < 1)n-)+l,E < E. Therefore, we can conclude that

j = I, ..., n,

as E -+ 0+, Since this holds for every I EO Cn[O, 8], we can choose arbitrary
values ofpH)(O); that is,

±aiu~H)(O)
i"""'l

can assume any value for suitable a1 , ... , an . Hence, the matrix An must be
nonsingular.

Conversely, suppose that An is nonsingular and lEO Cn[O, 8]. Write

n

Plf) = I Yi,EU, .
i=l

Again we may assume, without loss of generality, that U?-I)(O) = 8ioi ;

i,j = 1, ... , n. By the definition of Plf), we have

II PE(f) - 111[o,E] ~ II i: 1<i-1)(0) U, - III
, i~1 [o.d

"
~ II I Pi-l)(O) __"t

i

--=-_, - III +- G(E")
I i~1 (I - I). [o,d

= G(E").
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Hence, letting (Xi,. = Yi,. - j(i-1)(0), we have

~ Ii p.(f) - Iil[o,.] + II i j<i-1)(0) Ui - III
, i~l [0,.]

By the above lemma, (Xi,. ---+ °as E ---+ 0+, i = I, ... , n. Hence,

n

p.(f) ---+ L j(i-11(0) Ui= Po(f)·
i=l

375

The last statement in the theorem follows by applying Rolle's theorem.
This completes the proof of Theorem 2.1.

If the matrix An is singular, it is interesting to know what functions
fE Cn[O, 8] have the property that the net of best approximants {P.(!)}
converges as E ---+ 0+, To study this problem, we introduce the notion of
Taylor rank. Assume that for some N ;? n,

exists and has rank n. Then the smallest such N is called the Taylor rank of
the system {u1 , .•. , un}. Hence, if the matrix An in (2.1) is invertible, then
{u1 , ... , un} has Taylor rank n.

We assume that for this smallest N, U1 , ... , Un E OV[O, 8]. In general,
let QN be the image of Rn, the real Euclidean n-space, under the transfor­
mation ~v. We have the following result.

THEOREM 2.2. Let {u1 , ... , un}, have Taylor rank N, and let f E CN[O, 8]
be such that the N-vectorl '== (f(O),f'(O), ... , jlN-ll(O)) lies in QN • Then the net
{P.(j)} converges to Po(f) E Sn, as E ---+ 0+, where Po(f)(j)(O) = j(j)(O) for
j = 0, ... , N - 1.

When An of (2.1) is nonsingular, it is clear that j E QN = Rn for every
f E cn[o, 8]. We also remark that Theorem 2.2 and its proof remain intact
if {u1 ,... , un} is not a Haar system on [0,0]. Then p.(f) is any of the best
uniform approximants off on [0, E] from Sn .
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Proof of Theorem 2.2. Since JE QN, we can find a function Po E Sn
such that Priil(O) = jW(O) for j = 0, ... , N - 1. By Taylor's formula,

and hence, by the definition of P.(f),

:: Po - P.(f):I[o.d ~ Po - fll[o.<1 + :1 p.U) - fll[o.d

~ 2 II Po - fll[o,d 7= O(EN
).

Write
N-l

Po ~ p.(j) = I Ci .•fi + O(fN ).

i=O

Then,
N-l

II I Ci,.f
i

II = O(E
N

).
I i~1J [0 •• ]

Hence, by Markov's inequality,

Ci,. = O(e"'-i), i = 0,... , N - I,

so that Ci,. -+ °as E -+ O+, for i = 0,... , N - 1. Let Vi:: be a generalized
inverse of VN • Then

n

(Po - P.(j))(t) = I aj.•u;(t)
j~l

where

(the superscript T denotes, as usual, transpose). We remark that because of
the Taylor rank N, any generalized inverse of VN produces the same result.
Now ai .• -+ °as E -+ 0+, for i = 1, ... , n; so P.(j) -+ Po as E -+ 0+, and we
have completed the proof of the theorem.

3. QUASI-RATIONAL ApPROXIMATION

Let P and Q be finite-dimensional subspaces of qo, S), S > 0, of
dimensions m and n, respectively. We set

Qo = {u E Q: u(O) = O},
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and assume throughout this section that

n - 1 = dim Qo.

Set

QI = {u E Q: u(O) = I}.
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Then Ql is an affine variety in Q of dimension n - 1. Given f E qQ, 0),
consider the problem of minimizing

Ilfq - P 11[0••] ; PEP, q E Ql, (3.1)

where °< € :(; o. The minimizing pairs (P. , q.), which exist as will be seen
below, will be called best (uniform) quasi-rational approximants of f on
[0, €] from P X QI, and the problem will be called best (uniform) quasi­
rational approximation. We now state two results concerning existence and
uniqueness of best quasi-rational approximants. They are almost self-evident

PROPOSITION 3.1. Let f E qo, E]. Then there exists a pair (P. , q.) E P X QI
such that

Ilfq. - P. 11(0.•] = inf{llfq - P 11[0••] : PEP, q E QI}'

Choose q* E QI ; then QI = q* + Qo and we see that the existence of
a minimizing pair for (3.1) is equivalent to the existence of a minimum of

where

R f - P + fQo - {p + fq: pEP, q E Qo},

(3.2)

(3.3)

a finite-dimensional subspace of qo, 0). Clearly, (3.2) is minimized by some
u. E Rf , so that (3.1) has a minimizing pair.

PROPOSITION 3.2. Let fE qo, €) be such that R f as defined in (3.3) is a
Haar subspace of qo, E). Then the problem of minimizing (3.1) has a unique
solution.

In order to consider best local quasi-rational approximation, (i.e., taking
€ -+ 0+), we must assume smoothness of the functions. Let P, QC Cm+n+I[O, 0),
m :;;:, 1, n > 1. Let {PI, ..., Pm} and {qi ,..., qn-I} be bases of P and Qo,
respectively.
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For every f E cm+n+l[O, 8], we let

if ~ i ~m,

if m + I :s:;; i ~ m + n - I.

Then {,pI"'" ,pm+n-I} spans Rf • Consider the Wronskian determinant of
{,pi}, i = 1,... , m + n - 1, at the origin:

W(f, 0) ;= W(f; ,pI"'" ,pm+n-I)(O) = det[,p~i-l)(O)]. (3.4)

If W(f;,p1 ,... , ,pm+n-I)(O) of= 0, then by continuity, we have W(f; ,...,
,pm+n-I)(X) =I 0 for all small x ~ 0, so that {,pI'"'' ,pm+n-I} (or a rearrange­
ment of it), is an extended Chebyshev system [cf. 2]) on [0, €] for some
€ > 0 and hence, is Haar there. Thus, if W(f, 0) ;= W(/; rfI ,..., ,pm+n-I)(O) =I 0,
then the problem of minimizing (3.1) has a unique solution (P. , q.) E P X QI
for all sufficiently small € > O. The following result will follow from
Theorem 2.1.

THEOREM 3.1. Let f E cm+n+l[O, 8] be such that W(f, 0) =I O. For all
positive € :s:;; some €o :s:;; 8, let (P., q.) be the (unique) best quasi-rational
approximant offon [0, €]from P X QI' Then the net {(P., q.)}, 0 < € :s:;; €o,

converges, as € --+ 0+, to a pair (Po, qo) E P X QI' Furthermore,

(3.5)

as x --+ 0+.

Proof Since W(f, 0) =I 0, {,pI'"'' ,pm+n-I} is a basis of Rf • Pick an
arbitrary function q* E QI . By Theorem 2.1, the best uniform approximant
u. of fq* on [0, €] converges as € --+ 0+. Now, u. = P. + fq., P. E P and
q. E Qo' Note that fq* - u. = f(q* - q.) - p., and q* - q. E QI' By
uniqueness, q* - q. = q. and P. = P.. Hence, the net (P., q.) converges
to, say, (Po, qo) E P X QI' as € --+ 0+. Furthermore, again from Theorem 2.1,
we have

(Po + f(q* - qo))<j)(O) = (fq*)j(O), j = 0, ... , m + n - 2,

so that (fqo - Po)(j)(O) = 0, j = 0,..., m + n - 2. Since qo(O) = I, we can
conclude that (3.5) holds as x --+ 0+.

As can be seen from the definition, there is a close connection between
best local quasi-rational approximation and Pade approximation. Recall
that if fE cm+n +1[O, 8], 8 > 0, m ~ 0, n ~ 0, then the [m, n] Pade approxi-
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mant of I, at 0, to be denoted by [m, n](f), is the unique rational function
r = p/q, where p and q are, respectively, polynomials of degrees ~m and
~n, such that

(fq - p)(j)(O) = °
for j = 0,... , m + n. (Cf. [I, Lemma I].) As an application of Theorem 3.1,
we have the following result, relating best quasi-rational approximation and
Pade approximation. To do this, consider P = span{l, ... , xm} and
Q = span{I, ..., xn}, so that dim P = m + 1 and dim Q = n + 1.

THEOREM 3.2. Let f(x) = 00 + 0lX + ... + om+nxm+n + O(xm+n+l) be °
function in Cm+n+1[0, 0], (j > 0, m :? 0, n :? 0, such thot

det

°m_l ... om_n+1l
Om . . • . .. 0m-n+2 # °
0m+n-2 ..• Om

and ao =1= 0. (3.6)

Here, aj = ° if j < 0. Let (P. , q.), °< € ~ 0, be the best quasi-rational
approximant off on [0, e] from P X Ql (which exists and is unique). Then
the net {P./q.}, °< € :(; 0, of rational functions of type (m, n) converges, as
€ -+ 0+, uniformly on some real neighborhood ofO, to the [m, n] Pade approxi­
mant [m, n](f) off

We remark that the nonsingularity condition (3.6) onfis a very common
hypothesis in the literature on Pade approximation (cf, e.g., [6]).

To prove Theorem 3.2, we simply apply Theorem 3.1. Note that in this
(polynomial) case, dim P = m + 1 and dim Q = n + 1 (instead of m and n,
respectively, as in Theorem 3.1); dim Qo is now (n + 1) - I = n. If we
can prove that W(f, 0) ¥= 0, then we shall have that (P., q.) converges
uniformly on some real neighborhood ofO, to (Po, %), and by (3.5), we shall
obtain

so that, since %(0) = I,

j = 0, 1,... , m + n,

that is, Po!qo = [m, n](f). Recall that here

W(f) = W(I, ..., xm,j' x,j' x2, ...,j' x n);
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hence, as one easily can see,

W(/, 0)

OJ 0

X

= det
I (m+I)! am (m+I)! am-1 .,. (m+I)! am_n+1~

o I (m+2)! am+1 (m+2)! am .,. (m+2)! am- n+2

I (m+n)! am+n- 1 (m+n)! am+n- 2 ••• (m+n)! am

~
am

= jJ (j!) }] (m + i)! det am+1

am+n - 1

""'0
am+n - 2

am
_

n
+

1j
am- n+2

am

by (3.6). This completes the proof of the theorem.

4. FINAL REMARKS

In Theorem 3.1, if W(/, 0) == W(f; cP1 ,... , cPm+n-l)(O) = 0, then a best
quasi-rational approximant (P., q.) of f on [0, E) from P X Ql still exist
for each E, 0 < E ,s;; 8, but may not be unique, and in picking some best
quasi-rational approximant (P., q.) for every such E, the net {(P., q.)}
mayor may not converge as E --+ 0+. Theorem 2.2 allows us to conclude
that we do have convergence for functions f which are sufficiently smooth;
for such anfand for a certain q* E Q1' the vector

«q*f)(O), (q*f)'(O),oo., (q*f)N-l(O»

lies in the range of ARm+n-\ where A = [cP(j)(O»), I ,s;; i ,s;; m + n - I,
o ,s;; j ,s;; N - 1, and N is the Taylor rank of

Some conclusions also can be drawn on the limit functions. However, many
intriguing problems concerning best local approximation and best local
quasi-rational approximation remain open.
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